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Abstract

A numerical method is applied to analyse hydrodynamically developed internal forced laminar flow in microgeometries, for a

Newtonian fluid in ducts of sinusoidal cross-section. The solution to the momentum equation is obtained through a co-ordinate

transformation that maps the sinusoidal cross-section into the interior of a square. The hypotheses of constant physical properties

and fully isothermal developed flow are supposed to hold. Slip flow conditions are imposed at the walls, with a first-order boundary

condition. The effects of the fluid rarefaction appear in the Knudsen number, which introduces the linear dependence between the

slip velocity and the velocity gradient. The 2D velocity distribution is obtained as a function of the Knudsen number, and con-

sequently, the friction factor (in fully developed isothermal flow) is deduced.
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1. Introduction

The cooling of microelectronics and microstructures

is becoming more and more crucial with the increasing
downscaling of integrated circuits and the growth of the

micromachining industry. Microelectromechanical sys-

tems (MEMS) can sense, control and actuate devices in

several applications, they are fabricated in long arrays

and can range in size from micrometres to millimetres

Ho and Tai (1996). Miniaturisation of mechanical sys-

tems enables great opportunity in the progress of science

and technology; they are lighter, faster and more precise
than their macroscopic counterparts.

Research on MEMS is exploring design tools to fa-

cilitate the conception of these microstructures, mainly

for packaging solutions. Many applications involve the

analysis of fluid flow in microscale geometry, ranging

from microsurgery and microinstrumentation, to mi-

nuscule robots. Other applications include micropumps,

miniature heat pumps, injectors, microheat exchangers,
propulsion of microsatellites, transport of gases in micro-

chromatography, biomedical technologies, ink-jet prin-

ter heads. Thermal issues are crucial at all levels of

product hierarchy.

In electronic cooling the circuits are located on one
side of the wafer, whereas microchannels are fabricated

on the other side. Due to the small hydraulic diameter,

often the fluid has low Reynolds number and turbulence

is not desired for obvious drag and noise problems.

On the microscale, fluid flow is strongly affected by

surface phenomena. The inertial forces tend to be small,

and surface effects are prevailing; in a non-negligible

layer molecular collisions with the wall dominate over
intermolecular collisions, while the bulk of the fluid

maintains its continuum behaviour. In several applica-

tions the flow pattern corresponds to a slip flow, the

fluid presents a loss of adhesion at the wetted wall

making the fluid slide along the wall. Slip in internal

flows occurs for gas at low pressure and for flow in small

passages. This effect has a tremendous influence on

pressure drop, shear stress, mass flow rate, and the
physical laws governing fluid flow models differ from the

classical laws of continuum fluid dynamics.

The appropriate flow models depend on the range of

the Knudsen number. For Kn < 10�3 the fluid can be

considered as a continuum, for 10�3 < Kn < 0:1 slip
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flow is observed, it occurs when the fluid velocity on the

wall differs from the wall velocity and the molecular

mean free path becomes comparable with the tube hy-

draulic diameter. For increasing Knudsen number,

0:1 < Kn < 10, a transition regime is observed, for

Kn > 10 the fluid is in free molecular flow.

The classification is based on empirical information

and it could be modified according to the flow geometry,
as verified by Tison (1993), who found that in a pipe the

slip flow regime extends up to Kn ¼ 0:6. An exhaustive

review is reported in Beskok et al. (1996) and Karni-

adakis and Beskok (2001).

Numerical simulation is well suited for microflows. In

the slip flow regime the Navier–Stokes equation can be

used, involving either modified boundary conditions at

the surface, or modified transport coefficients. Slip flow
in circular and rectangular ducts has been already

analysed (Barron et al., 1997; Larrod�ee et al., 2000;

Kwang-Hua, 1999; Morini and Spiga, 1998), but the

flow passages in microheat exchangers and cooling de-

vices can present a different geometry.

With the advancement of technology many different

passage configurations have been introduced; one of the

most interesting geometry, for its recent practical ap-
plications, is the sinusoidal cross-section (Manglik and

Bergles, 1998; Ding and Manglik, 1996; Uzun and
€UUnsal, 1997). It can be found as a passage represented

by a single sine curve forming the upper portion of the

duct and a flat plate at the bottom portion of the

boundary. These ducts represent a typical corrugated

profile, common in compact heat exchangers because of

their simplicity of construction, where they provide

larger surface area and small hydraulic diameters, pro-

moting a better heat transfer condition. The sinusoidal

shape is originated by the effort to obtain triangular

passages, when, due to manufacturing processes, roun-

ded corners are obtained. The small hydraulic diameter
of the sinusoidal ducts allows obtaining a low Reynolds

number; hence fully developed laminar flow can prevail

along the tube length. Several papers have reported so-

lutions for continuum laminar flow in sinusoidal ducts

and the research interest is significant, as discussed by

Pinazza and Spiga (2000) and Richardson et al. (2000).

The pioneering numerical works were reviewed and

presented by Shah and London (1978), concerning the
single sine shape geometry, but recent papers presented

new contributions and higher accuracy in the numerical

results.

The aim of this paper is the numerical analysis of the

main dynamic parameters involved in slip flow of

Newtonian fluids in single sine-shaped ducts. The paper

presents a comparison between the computed parame-

ters (as a function of the Knudsen number) and the
analogous data, available in references only for Kn ¼ 0.

The results constitute an original development in the

field of basic microfluid dynamics and could provide a

new tool for applications to engineering problems in

miniaturisation.

Nomenclature

A cross-sectional area of the duct, m2

a, b typical dimensions of the sinusoidal cross-

section, m

d dimensionless hydraulic diameter of the duct

D=a
D hydraulic diameter of the duct 4A=Pw, m
f Darcy–Weisbach friction factor in fully de-

veloped isothermal flow
gf f-component of the gravitational accelera-

tion, m s�2

J Jacobian

Kn hydraulic-diameter based Knudsen number

k=D
n dimensionless co-ordinate normal to the pe-

rimeter contour, entering the fluid core

p pressure, Pa
P velocity defined in Eq. (3), m s�1

Pw wetted perimeter, m

Re Reynolds number WD=m
t dimensionless shear stress

U dimensionless average fluid velocity W =P

vð�Þ dimensionless fluid velocity V =P
V ð�Þ axial fluid velocity, m s�1

W average velocity, m s�1

x; y; z dimensionless rectangular Cartesian co-ordi-

nates in the physical domain

x0; y0 dimensionless transformed Cartesian co-or-

dinates in the computational domain

Greeks

a slip coefficient

b sine aspect ratio b=a
k mean free path, m

l dynamic viscosity, Pa s

q density, kgm�3

s shear stress, Pa
n; g; f Cartesian co-ordinates, m

Subscripts

max maximum

w wall

x or y derivation with respect the co-ordinate x or y
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2. Fluid flow and duct geometry

A single phase, Newtonian fluid is considered in

steady-state, hydrodynamically developed forced lami-
nar slip flow in a single-sine-shaped duct, schematically

shown in Fig. 1. The Cartesian system of co-ordinates

n; g; f has its origin in the centre of the straight line, with

n along the horizontal side a; f perpendicular to the

cross-section, g ¼ ð1=2Þbð1þ cos 2pn=aÞ.
The cross-sectional area can be easily evaluated; in

dimensionless form (A=a2) it results b=2, while the di-

mensionless wetted perimeter can be numerically deter-
mined by solving the following integral:

Pw
a

¼ 1þ 2

Z 1=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2p2 sin2ð2pxÞ

q
dx ð1Þ

Introducing the usual hypotheses of constant physical

properties and pressure gradient along the f axis, and

neglecting natural convection and viscous dissipation,

the dimensionless momentum Navier–Stokes equation
is:

o2V
ox2

þ o2V
oy2

þ 1 ¼ 0 ð2Þ

The dimensionless co-ordinates and velocity are:

x ¼ n
a

�
� 1

2
6 x6

1

2

�
; y ¼ g

a
; v ¼ V

P
with

P ¼ a2

l

�
� op

of
þ qgf

�
ð3Þ

The co-ordinate y ranges from 0 to ð1=2Þb½1þ cosð2pxÞ	.
To obtain a well-posed partial differential problem, the

slip boundary conditions are prescribed as:

vw ¼ adKn
ov
on

� �
w

ð4Þ

where the coefficient a depends on properties of the in-

teraction between gas and wall surface through the ac-
commodation coefficients (Barron et al., 1997; Larrod�ee

et al., 2000); a ¼ 1 corresponds to diffuse scattering, as

typical in engineering applications. Hence, hereafter a
will be considered unity. The strong coupling of the

governing equations and more general non-linear
boundary conditions make the problem very intensive,

computationally.

3. Numerical procedure

The numerical solution is obtained by transforming

the sine-shaped cross-section into an equivalent square
computational domain. Resorting to the grid generation

technique, the differential equation (2) is transformed

from the physical domain in the (x; y) plane to the

computational domain in the (x0; y0) plane (Hornbeck,

1975; Haltiner and Williams, 1980; Thomson et al.,

1982). The new transformed equation is solved on a

rectangular grid in the computational plane, whose co-

ordinates are chosen to satisfy the Laplace equation:

o2x0

ox2
þ o2x0

oy2
¼ 0

o2y0

ox2
þ o2y0

oy2
¼ 0 ð5Þ

The sinusoidal surface contour is mapped into a square.

The straight line becomes two consecutive sides of the

square, the sinusoidal line is represented by the other

two sides of the square. According to the numerical
procedure, using the chain rule, the partial derivatives

become:

o

ox
¼ x0x

o

ox0
þ y0x

o

oy0
o

oy
¼ x0y

o

ox0
þ y0y

o

oy0

o2

ox2
¼ x0xx

o

ox0
þ y 0xx

o

oy 0
þ x02xx

o2

ox02
þ 2x0xy

0
x

o

ox0
o

oy 0
þ y 02xx

o2

oy 02

o2

oy2
¼ y0yy

o

oy 0
þ y 0yy

o

oy0
þ x02yy

o2

ox02
þ 2x0yy

0
y

o

ox0
o

oy 0
þ y 02yy

o2

oy02

ð6Þ
The partial derivatives of an arbitrary function u (with

respect to x and y, respectively) are:

ux ¼ ux0x0x þ uy0y 0x uy ¼ ux0x0y þ uy0y0y ð7Þ

The correlations among the derivatives of the physical

and transformed co-ordinates are:

xx0x0x þ xy0y0x ¼ 1; xx0x0y þ xy0y0y ¼ 0;

yx0x0x þ yy0y0x ¼ 0; yx0x0y þ yy0y0y ¼ 1
ð8Þ

being xx ¼ yy ¼ 1, xy ¼ yx ¼ 0.
By solving the system (8), the unknown derivatives

are expressed as:

x0x ¼
yy0
J
; y0x ¼ � yx0

J
; x0y ¼ � xy0

J
; y0y ¼

xx0
J

ð9Þ

where J is the Jacobian of the transformation J ¼
xx0yy0 � xy0yx0 . The Jacobian of the transformation is al-

ways non-zero.Fig. 1. Co-ordinates for the sine-shaped duct cross-section.

238 O. Pinazza, M. Spiga / Int. J. Heat and Fluid Flow 24 (2003) 236–241



The grid generation is performed through the con-

formal transformation governed by the equations:

ðx2y0 þ y2y0 Þ
o2x
ox02

� 2ðxx0xy0 þ yx0yy0 Þ
o2x

ox0oy 0
þ ðx2x0 þ y2x0 Þ

o2x
oy 02

¼ 0;

ðx2y0 þ y2y0 Þ
o2y
ox02

� 2ðxx0xy0 þ yx0yy0 Þ
o2y

ox0oy 0
þ x2x0
�

þ y2x0
� o2y
oy 02

¼ 0

ð10Þ
Their solution gives the values of the physical co-ordi-

nates (x,y) at all points of the transformed computa-

tional square domain. Following this procedure, the

transformed momentum differential equation in the
computational domain becomes:

ðx2y0 þ y2y0 Þ
o2v
ox02

� 2ðxx0xy0 þ yx0yy0 Þ
o2v

ox0oy0

þ ðx2x0 þ y2x0 Þ
o2v
oy02

þ J 2 ¼ 0 ð11Þ

The transformed partial differential equation (11) is

discretized and solved using finite-difference techniques

in the computational domain, for all grid points. Then

the solution is simply transferred to the physical sinu-

soidal domain. Numerical computations were performed

using a uniform 100
 100 grid in x0 and y0. The con-

vergence criterion was set to 10�6 for the maximum rel-

ative error in values of the dependent variable between

two successive iterations.
Numerical computations were carried out using

double precision arithmetic in Fortran programming

language.

4. Results

The results presented in this section, are obtained for
incompressible fluid in developed slip flow. Though the

Knudsen number should be classically limited in the

range 10�3–10�1, also results with Kn ¼ 0:5 are sket-

ched. They can be seen as an extrapolation of slip flow in

the early transition regime, or, if the hypothesis of Tison

(1993), will be verified, as a solution in the extended

region of slip flow. The numerical procedure reported

in the preceding sections gives the 2D velocity distri-
bution in the hydrodynamically developed region. The

2D distribution of the dimensionless shear stress t ¼ sa=
lP is:

Fig. 2. Dimensionless velocity distribution, with b ¼ 1.
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t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
ð12Þ

where the partial derivatives of velocity with respect to

the physical co-ordinates are:

vx ¼
vx0xy0 � vy0yx0

J
; vy ¼ � vx0xy0 � vy0xx0

J
ð13Þ

In order to determine the frictional loss from the ve-

locity distribution, the average velocity is calculated
from its usual definition. As usual, it is presented as the

friction factor–Reynolds number product:

f Re ¼ � 2D2

A

Z
oðV =W Þ

on
dPw ¼ 2d2

U
ð14Þ

The explicit numerical solutions have been obtained

using a PC class computer. As an example, the 2D

computed velocity distributions V =Vmax, given by the

numerical procedure, is shown in Fig. 2 for different

values of Kn, and b ¼ 1. These profiles are well sup-

ported by the physical intuition. The fluid velocity ex-

periences a slow and gradual increase from the walls to

the centre; the jump at the walls is well evident, mainly
for increasing Knudsen numbers, as well as the occur-

rence of a more flattened profile.

Table 1 shows the dimensionless co-ordinate gmax=
b ¼ ymax=b, where the local velocity presents its maxi-

mum value in the single sine-shaped duct; with in-

creasing Knudsen number the peak point gets far from

the straight line, mainly for high aspect ratios.

The dimensionless maximum velocity is reported in
Fig. 3, as a function of the Knudsen number, for dif-

ferent geometrical configurations. Fig. 4 sketches the

friction factor–Reynolds number product. The graphs

confirm the physical deductions: when Re is settled, f
decreases for increasing values of Kn and decreasing

values of b.
These results can be compared with the available data

quoted in literature (Pinazza and Spiga, 2000; Rich-
ardson et al., 2000; Shah and London, 1978) for Kn ¼ 0,

which constitute a benchmark to verify the reliability

and accuracy of the numerical procedure; the agreement

is perfect. As a further benchmark, the parameters

Vmax=W and f Re can be deduced for slip flow in circular

and square ducts (Morini and Spiga, 1998), they are

sketched in Figs. 3 and 4 (dotted lines) and they show a
trend very close to the behaviour of the analogous pa-

rameters for sine-shaped ducts.

Future works will be devoted to the solution of the

Navier–Stokes equation with more general boundary

conditions, considering a velocity-slip condition pre-

sented by Karniadakis and Beskok (2001), aimed at

developing a unified flow model valid in the entire

Knudsen regime. A semi-empirical model for rarefied
flow in 3D ducts, proposed and validated by the same

authors with a direct simulation Monte Carlo method,

will be used for comparison with the numerical results.
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Table 1

Location gmax=b of the maximum velocity

b Kn

0 0.01 0.1 0.5

0.125 0.494 0.494 0.494 0.494

0.250 0.480 0.480 0.480 0.480

0.500 0.430 0.430 0.430 0.441

0.750 0.375 0.375 0.375 0.397

1.000 0.337 0.337 0.348 0.370

1.500 0.272 0.272 0.282 0.315

2.000 0.232 0.232 0.251 0.285

4.000 0.155 0.155 0.163 0.195

Fig. 3. Dimensionless maximum velocity.

Fig. 4. Friction factor–Reynolds number product versus Kn.
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